Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts - Batteries News

News

HomeHome / News / Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts - Batteries News

Oct 31, 2024

Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts - Batteries News

Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts VANCOUVER, BC, Oct. 30, 2024 /PRNewswire/ — The Battery Advocacy for Technology Transformation Coalition , a new

Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts

VANCOUVER, BC, Oct. 30, 2024 /PRNewswire/ — The Battery Advocacy for Technology Transformation Coalition, a new group of battery material producers, is pressing U.S. lawmakers to revise the 2022 climate law, aiming to close loopholes that foreign entities of concern could exploit. This call comes amid broader concerns from the International Energy Agency (IEA), which warns that falling mineral prices may disguise risks of future scarcity in essential battery materials like lithium, copper, cobalt, nickel, and graphite. With the electric vehicle (EV) market accelerating globally, analysts at Fastmarkets highlight challenges in securing these critical resources, as supply chain vulnerabilities—including material shortages, geopolitical tensions, and regulatory shifts—pose significant risks. Meanwhile, innovators in battery manufacturing and recycling as well as mining companies and automakers are advancing efforts to stabilize the supply chain and support the green energy transition, including: Battery X Metals, Inc. (CSE: BATX) (OTCQB: BATXF), FREYR Battery, Inc. (NYSE: FREY), Piedmont Lithium Inc. (NASDAQ: PLL), Toyota Motor Corporation (NYSE: TM), and Mercedes-Benz Group AG (OTCPK: MBGAF).

The article continued: New data from Kelley Blue Book shows that EV sales have reached unprecedented volumes and market shares, driven by expanded incentives and a greater variety of models. By the end of 2025, Gartner forecasts 85 million EVs on the road, with their usage projected to grow by 33% that year.

Battery X Metals Announces Advancements in Eco-Friendly Lithium-ion Battery Material Recovery Technology with Global Top 20 University Partnership

Battery X Metals, Inc. (CSE: BATX) (OTCQB: BATXF), a clean energy technology and exploration company, focused on developing proprietary technologies to extend the lifespan of electric vehicle (EV) batteries, recover battery-grade materials from end-of-life lithium-ion batteries, and exploring battery and critical metal resources, recently announced significant advancements by its wholly-owned subsidiary, Battery X Recycling Technologies Inc., in developing eco-friendly lithium-ion battery-grade material recovery technology. These advancements are in collaboration with a Global Top 20 University as part of an ongoing research partnership.

The partnership has led to promising results in optimizing battery-grade graphite recovery from lithium-ion battery black mass using Battery X’s proprietary froth flotation process. These trials have been instrumental in refining the technology to recover battery-grade materials such as graphite, lithium, nickel, and cobalt from black mass, advancing both technological development and process design.

Massimo Bellini Bressi, CEO of Battery X Metals, said :

Our progress in developing proprietary eco-friendly technology is a significant step forward in sustainable battery recycling, particularly by addressing graphite recovery, which is often overlooked in conventional methods,

“The positive preliminary results from our collaboration with a Global Top 20 University highlights our potential to meet the increasing demand for battery materials in a sustainable way. We look forward to advancing this partnership, validating our technology, applying for provisional patents, and ultimately exploring strategic opportunities to license our technology to industry partners.”

In controlled laboratory tests, the Global Top 20 University conducted multiple experiments to optimize black mass flotation in a Denver Cell with a 500g sample size for each experiment, assessing various frother and collector dosages across single- and multi-stage flotation protocols. Initial single-stage tests focused on frother-only trials to stabilize bubbles, followed by adding a collector to enhance graphite’s hydrophobicity. The frother-alone trials produced dark froth that lightened over time, while the addition of a collector created a more stable, thicker froth, extending flotation duration and enhancing graphite separation.

Multi-stage flotation protocols with adjusted frother and collector dosages further refined the separation process. Multi-stage flotation showed that each stage’s froth thinned and lightened over time, with flotation effectively concluding more rapidly.

Preliminary assays confirmed that the black mass sample used in the experiments consisted of approximately 45% graphite, with oxides and phosphates comprising the remainder. Initial separation tests successfully floated approximately 45% of the black mass sample (mainly graphite), while oxides and phosphates remained in the tailings, underscoring the efficiency of the flotation process in isolating battery-grade graphite, a fundamental component to lithium-ion anodes. These promising results serve as a baseline for validating the recovery technology.

Battery X and the Global Top 20 University have made strides in process design through lab-scale trials, demonstrating that multi-stage flotation achieves more efficient material separation than single-stage methods. Trials incorporated varied reagent dosages to stabilize froth formation, maximize graphite yield, and manage oxide and phosphate separation in specific stages. Ongoing R&D efforts focus on consistent trial results that align with industry metrics, providing a solid foundation for future potential scalability.

Battery X and the Global Top 20 University intend to conduct comprehensive chemical assays to quantify graphite recovery rates, assess material purity, and verify oxide and phosphate separation.

With the current black mass sample being primarily oxide-based, the next phase will focus on optimizing oxide and phosphate recovery, testing additional surfactants in dedicated flotation stages to validate oxide and phosphate recovery, for future patent applications and commercial use.

To further support this phase, Battery X plans to provide the Global Top 20 University with phosphate-based black mass samples to test in tandem with its existing oxide-based sample. Upon successful validation Battery X and the Global Top 20 University plan to pursue provisional patents to secure IP for these advancements, with the Battery X‘s future business strategy centered on licensing this IP to battery recyclers with existing infrastructure, aiming to establish itself as a downstream technology partner with a low-capex, scalable model.

CONTINUED… Read this and more news for Battery X Metals at https://usanewsgroup.com/2024/10/26/seize-visionary-opportunities-in-ev-battery-recycling-and-lifespan-extension-technology/

Other recent industry developments and happenings in the market include:

FREYR Battery, Inc. (NYSE: FREY), a developer of sustainable battery and clean energy solutions, recently announced the confirmation that it had had been selected by the European Union Innovation Fund for a €122 million (~US$131.5 million) grant award to develop Freyr’s potential joint venture Cathode Active Material (CAM) manufacturing project in Vaasa, Finland. The CAM project is targeting development of an industrial scale LFP CAM facility with an initial nameplate capacity of 30,000 tons per year.

Tom Einar Jensen, Co-founder and CEO of FREYR, said :

We are very grateful to be selected for this grant award from the EU Innovation Fund, which demonstrates the EU’s continued support for FREYR’s ongoing industrialization efforts of sustainable battery value chain solutions,

FREYR is focused on its development efforts in the U.S. while we continue to explore avenues to unlock shareholder value from our portfolio of real assets and potential projects in Norway and Europe such as the proposed CAM facility in Finland. We look forward to collaborating with our colleagues at the EUIF to finalize this grant.”

Piedmont Lithium Inc. (NASDAQ: PLL), a leading North American supplier of lithium products critical to the US EV supply chain, recently announced that it had shipped approximately 31,500 dry metric tons of spodumene concentrate in Q3’24 as its jointly owned North American Lithium (NAL) achieved new quarterly production and operational performance records. NAL, North America’s largest producing spodumene mine, is jointly owned by Piedmont (25%) and Sayona Mining Limited (75%).

Keith Phillips, President and CEO of Piedmont Lithium, said :

We are pleased to see the benefits from investments made at NAL during the last quarter, with the increase in quarterly production cementing NAL’s status as the largest spodumene producing mine in North America,

“Operational performance continues to improve on a quarterly basis and Sayona’s recent announcement of the increase to the Mineral Resource Estimate lays the foundation for a potential growth at NAL in the future.”

Prior to this, Piedmont announced that its JV Ewoyaa Lithium Project in Ghana also received its Mine Operating Permit, which was required to commence Project construction.

Earlier this year, automaker Toyota Motor Corporation (NYSE: TM) and the U.S. Department of Energy’s (DOE) Argonne National Laboratory jointly announced they are developing an innovative process to reduce the costs and environmental footprint of battery recycling. Argonne and Toyota Motor North America entered into a Cooperative Research and Development Agreement to create a direct recycling process for nickel, manganese, and cobalt cathodes in lithium-ion batteries, commonly used in EVs. This collaboration will leverage a patent-pending direct recycling technique from Argonne’s ReCell Center, which uses magnets to separate cathodes and anodes. Toyota will supply Argonne with both new and end-of-life batteries from its plug-in hybrid EVs to advance this innovative recycling method.

Albert Lipson , Principal Materials Scientist of Argonne, said :

Direct recycling is cutting-edge in the battery industry,

“There are a few startup companies with small-scale pilot projects underway. But implementation at commercial scale is still in need of new innovations.”

German automaker Mercedes-Benz Group AG (OTCPK: MBGAF) recently announced the opening of its own recycling factory to close the battery loop. The project is Europe’s first battery recycling plant with an integrated mechanical-hydrometallurgical process making it the first car manufacturer worldwide to close the battery recycling loop with its first own in-house facility, in Kuppenheim, Germany. Mercedes-Benz has invested millions in the new recycling plant with an advanced process expected to recover over 96% of critical materials like lithium, nickel, and cobalt for reuse in new EV batteries.

Ola Källenius, Chairman of the Board of Management of Mercedes-Benz, said :

Mercedes-Benz has set itself the goal of building the most desirable cars in a sustainable way,

“As a pioneer in automotive engineering, Europe’s first integrated mechanical-hydrometallurgical battery recycling factory marks a key milestone towards enhancing raw-materials sustainability. Together with our partners from industry and science, we are sending a strong signal of innovative strength for sustainable electric mobility and value creation in Germany and Europe.”

READ the latest Batteries News shaping the battery market

Supply Chain Risks Grow as Demand for EV Battery Materials Intensifies, Say Analysts, source

Battery Advocacy for Technology Transformation CoalitionInternational Energy Agency (IEA)FastmarketsBattery X Metals, Inc. FREYR Battery, Inc. Piedmont Lithium Inc. Toyota Motor Corporation Mercedes-Benz Group AG Kelley Blue BookGartner Battery X Metals Announces Advancements in Eco-Friendly Lithium-ion Battery Material Recovery Technology with Global Top 20 University PartnershipBattery X Metals, Inc. (CSE: BATX) (OTCQB: BATXF)Battery X Recycling Technologies Inc.Global Top 20 UniversityBattery X’sMassimo Bellini BressiBattery X MetalsBattery X Global Top 20 UniversityBattery X Global Top 20 Universityprovisional patentsBattery Xscalable modelCONTINUED… Read this and more news for Battery X Metals atFREYR Battery, Inc. European Union Innovation FundFreyr’sTom Einar JensenFREYRFREYR’sFREYREUIF Piedmont Lithium Inc. North American Lithium (NAL)NALPiedmontSayona Mining LimitedKeith Phillips,Piedmont LithiumNALNAL’sSayona’sNAL Piedmont Toyota Motor Corporation U.S. Department of Energy’s (DOE) Argonne National Laboratory Argonne Toyota Motor North AmericaArgonne’sToyotaArgonne Albert Lipson ,Mercedes-Benz Group AG Mercedes-BenzOla KälleniusMercedes-BenzMercedes-BenzREAD